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Abstract: - In this paper, the analysis of the κ-µ-g random variable is presented. The κ-µ-g random variable was 

obtained from κ-µ random variable whose power follows Gamma distribution. The closed form expressions for 

probability density function (PDF) and cumulative distribution function (CDF) of κ-µ-g random variable are 

determined. Then, PDFs of the moment of n-th order of κ-µ-g random variable, maximum, minimum, ratio and 

product of two κ-µ-g random variables are derived in the closed form. This analysis is important for the 

modelling of the wireless mobile communication systems in the presence of κ-µ-g short term fading, Gamma 

shadowing and κ-µ-g cochannel interference. 
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1  Introduction 
The characteristics of κ-µ-g random variable, as 

important performance of a compound fading 

model, are investigated in [1], [2].  Distribution of 

maximum and minimum is derived in [1]. The 

closed form expressions for probability density 

function (PDF) and cumulative distribution 

function (CDF) of κ-µ-g random variable are 

determined in [2]. Then, PDFs of the moment of 

n-th order of κ-µ-g random variable, the ratio 

and product of two κ-µ-g random variables are 

calculated in the closed form [2]. Using these 

expressions, performance analysis of wireless 

communication systems in the presence of κ-µ-g 

multipath fading and κ-µ-g cochannel interference 

can be made becuase this distribution describes 

composite fading model with gamma shadowed κ−µ 

multipath fading. The distribution κ−µ/gamma 

corresponds to a physical fading model [2]. This 

composite distribution is based on κ−µ generalized 

shadowed multipath fading model.  

Namely, in wireless communications systems 

fading causes fluctuations of received signal 

envelope over time [4], [5]. There are some different 

statistical models which can describe fading in 

wireless communication channels. The most often 

used are Rayleigh, Rician, Nakagami-m, Weibull, 

Hoyt, α−µ, κ−µ, η−µ, α−κ–μ , α−η–μ. We will 

analyze here the κ−µ−g distribution of fading. 

The κ-µ-g distribution has three parameters [2]. 

The parameter κ is Rician factor. It is defined as the 

ratio of the power of direct component of signal and 

the power of the scattered components. The κ-µ-g 

fading is less severe for higher values of factor κ. 

The parameter µ is tied to the number of clusters in 

propagation environment and the κ-µ-g multipath 

fading is less severe for bigger values of parameter 

µ. The parameter c is severity of Gamma shadowing 

and Gamma long term fading is less severe for 

higher values of parameter c. The κ-µ-g distribution 

is general distribution and some distributions can be 

derived from this distribution as special cases [2].   

The statistics of two random variables are very 

important for performance analysis of wireless 

mobile communication systems. The ratio of two 

random variables can be used in performance 

analysis of wireless systems operating over 

multipath fading channel in the presence of 

cochannel interference. In cellular radio interference 

limited environment, the ratio of signal envelope 

and interference envelope is important system 

performance [6]. 

Also, the ratios of random variables can be 

applied in performance analysis of wireless mobile 

communication systems which work over multipath 
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fading environment in the presence of cochannel 

interference suffered to multipath fading [7]- [8]. 

The statistics of two random variables are very 

important for performance analyzing of wireless 

mobile communication radio systems. Sum of two 

random variables can be used for calculation the 

outage probability of wireless system with equal 

gain combining (EGC) receiver with two inputs 

operating over short term fading channel. EGC 

receiver is used for reduction multipath fading 

effects on system performance [9]. 

The statistics of maximum of two random 

variables is often used for calculating the bit error 

probability (BER) of wireless communication 

system with selection combining (SC) receiver with 

two inputs, working over short term fading channel. 

The SC receiver output signal is equal to the 

maximum of signals at its inputs [10]. 

The statistics of minimum of two random 

variables is applicable in analysis of performance of 

wireless relay communication systems with two 

sections. Under determined conditions, signal 

envelope at output of relay system can be expressed 

as product of signal envelope at each section. 

Cumulative distribution of minimum of two random 

variables is used for calculation the outage 

probability of relay system with two sections. 

In [11], the PDF of minimum of ratios of random 

variables is presented. It can be used to derive the 

expression for moments-generating function to 

evaluate lower bounds for the average bit error 

probability, as another important system 

performance measure, for different modulation 

schemes.  

The statistics of ratio of two random variables 

can be used in performance analysis of wireless 

communication systems operating over short term 

fading channel in the presence of cochannel 

interference [12]. In cellular radio interference 

limited environment, the ratio of signal envelope 

and interference envelope is important system 

performance. The statistics of product of two 

random variables has application in performance 

analysis of wireless relay communication systems 

with two sections [13]. Under determined 

conditions, signal envelope at output of relay system 

can be expressed as product of signal envelope at 

each section [14].  

In this paper, the statistics of two κ-µ-g random 

variables are investigated. The closed form 

expressions for probability density function (PDF) 

and cumulative distribution function (CDF) of κ-µ-g 

random variable are determined. Then, PDFs of the 

moment of n-th order of κ-µ-g random variable, 

maximum, minimum, ratio and product of two κ-µ-g 

random variables are derived in the closed form. 

The results obtained in this work can be applied in 

performance analysis of wireless mobile 

communication systems in the presence of κ-µ-g 

small scale fading. 

This paper presents an overview of the 

performance of κ-µ-g random variable determined 

previously. It is organized as follows: in the second 

section, the κ-µ-g random variable is defined and 

the main quantities (PDF, CDF, moments, 

maximum, minimum, product and ratio) are 

calculated. In the third section, the numerical results 

are plotted and parameters influence is examined. 

Last section concludes the paper and gives some 

final remarks. 

 

 

2 The Statistics of the κ-µ-g Random 

Variable 

 
2.1 Probability Density Function of κ-µ-g 

Random Variable 
The κ-µ-g distribution describes signal envelope in 

Gamma shadowed κ-µ multipath fading 

environment. The probability density function of κ-

µ-g random variable is determined by integration of 

conditional κ-µ distribution [2]:  
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Here, κ is Rician factor, µ is the number of 

clusters in propagation environment, In(x) is 

modified Bessel function of the first kind and order 

n [15],  Γ(n) is (complete) gamma function,  Ω is the 

signal envelope average power with Gamma 

distribution, 2   , c is Gamma fading severity 

parameter. 
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PDF of the κ-µ-g random variable may be 

written in the form [2]: 
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Kn(x) is modified Bessel function of the second kind 

[16, eq. (3.471.9)]. 

 

2.2 Cumulative distribution function of κ-µ-g 

Random Variable 

The cumulative distribution function (CDF) of x 

is [2]: 
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      (5) 

 

2.3 Moment of n-th Order of the κ-µ-g 

Random Variable 
The moment of n-th order of κ-µ-g random 

variable is [2]: 
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2.4 Maximum of Two κ-µ-g Random 

Variables 
The maximum of two κ-µ-g random variables x1 and 

x2 is: 

1 2max( , )x x x    (7)  

The probability density function of x is:  
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Cumulative distribution function (CDF) of the 

maximum of two κ-µ-g random variables x1 and x2 

is: 
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It is important to derive the distribution of the 

maximum of random variables because SC receiver 

output signal is equal to the signal with maximal 

envelope if the noise is equally distributed at its 

inputs. 

 

2.5 Minimum of Two κ-µ-g Random 

Variables 
The minimum of two κ-µ-g random variables x1 and 

x2 is: 

1 2min( , )x x x   (10)  

The cumulative distribution function of x is: 

( ) ( )( ) ( )( )
1 21 1 1x x xF x F x F x= - - - =  
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The probability density function of minimum can 

be used to study the outage probability as an 

important multi-hop system performance measure. 

Various results complement the proposed 

mathematical analysis. 

 

2.6 Ratio of Two κ-µ-g Random Variables 

The distribution of the ratio of random variables 

is important in statistical analysis in a number 

of different fields of science and also in analysis 

of wireless communication systems in the 

presence of fading [17]. Videlicet, the random 

variable in nominator presents the desired 

signal envelope while the random variable in 

denominator presents the interference signal 

envelope. 
Conditional κ-µ random variable is: 
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The probability density function of 1 is:  
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By averaging we have: 
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Conditional probability density of x2 is: 
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The probability density function of 2 is:  
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By averaging, it is obtained: 
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The ratio of x1 and x2 is: 
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Probability density function of x is: 

      


222

0

2 21
xpxxpxdxxp xxx

 

 











2

1

1
2

1

1

2

1

11

1

11

1

1

12












e

 

  
 











111

12

0

111
!

1
1

11






ii

i

i

 

 









22

2

2

2

1

2

2

1

22 12











e

  
 











222

12

0

222
!

1
1

22

2






ii

i

i

 

   





 122

1

2121

11

21

11 



i

cc
x

cc
 

1

1111

1

1

1

0

1









ed
ci

2

2222

1

1

2

0

2









ed
ci  

12222

2

0

2
2211 



 
 ii

xdx  

   
 

















2

1

1
2

1

1

2

1

11

11

1

11

1

1

21

122
2

2112
2 12












e

e

x
x

 

  
 











111

12

0

111
!

1
1

11






ii

i

i

 

 









22

2

2

2

1

2

2

1

22 12











e

  
 











222

12

0

222
!

1
1

22

2






ii

i

i

 

   





 122

1

2121

11

21

11 



i

cc
x

cc
 

 2211
2

1
  ii  

1

12211111

1

1

1

0

1






 


ed
iici  

2

22211222

1

1

2

0

2






 


ed
iici

 

     2211

1222

2

11 11

1






ii

x
 

(18) 

Let the last double integral signed by J [19]: 
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Its solving is given in the Appendix. 

By solving this integral, PDF of the ratio of two 

κ-µ-g random variables x1 and x2 is: 
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(20) 

By substituting (20) into (18), the PDF of the 

ratio of two κ-µ-g random variables is: 
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2.7 Product of Two κ-µ-g Random Variables 
Desired signal in wireless communication systems 

can be subjected to cochannel interference (CCI) 

due to reused of radio frequencies which is main in 

increase the system capacity. Beside of fading, the 

wireless transmission can be degraded by 

shadowing which is the result of large obstacles and 

deviations in terrain profile between transmitter and 

receiver. In this composite fading-shadowing 

environment, the signal envelope can be modeled by 

product of two random variables [18]. Also, when 

two fading affect together at the combiner inputs, 

the equivalent envelope is equal to the product of 

two random variables. 

The probability density function of product of 

two κ-µ-g random variables x1 and x2 is: 
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3 Numerical Results 
The maximum of two κ-µ-g random variables is 

shown in Figs. 1 and 2. The maximum of two κ-µ-g 

random variables depending on Rician factor κ1 for 

c1=c2=μ1=μ2=2 and variable parameters κ2, β1 and β2 

is presented in Fig. 1.  

 

 
Fig.1. The maximum of two κ-µ-g random variables 

versus Rician factor κ1. 
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Fig. 2. The main value of the maximum of two κ-µ-

g random variables depending of the parameter β2. 
 

The maximum of two κ-µ-g random variables 

versus parameter β2, for c1= c2 =μ1= μ2=2 and 

variable Rician parameters κ1, κ2 and parameter β1 is 

plotted in Fig. 2. 

One can see from these two figures that 

maximum of two κ-µ-g random variables rises with 

growth of Rician factor κ1.The maximum is greater 

for bigger parameter β2. Also, the maximum is 

higher for larger parameters β1 and κ2. 

The minimum of two κ-µ-g random variables is 

presented in Figs. 3 to 6. The mean value of 

minimum of two κ-µ-g random variables versus 

Rician factor κ1 for c1=c2 =μ1= μ2=2, κ2=1 and 

variable parameters β1 and β2 is shown in Fig. 3. The 

minimum of two κ-µ-g random variables versus 

Rician factor κ2 for c1=c2=μ1=μ2=2 and changeable 

parameters κ1, β1 and β2 is given in Fig. 4. 

One can see from these two that minimum 

increases with enlarging of Rician factors κ1and κ2, 

but when it reaches a maximum, it stays with it for 

all other values of the Rician factors. 

 

Fig. 3. Mean value of minimum of two κ-µ-g 

random variables depending on the Rician factor κ1. 

 

 

 

Fig. 4. Mean value of the minimum of two κ-µ-g 

random variables versus Rician factor κ2. 

 

 

Fig. 5. Mean value of the minimum of two κ-µ-g 

random variables depending on the parameter β1. 

 

 

 

Fig. 6. Mean value of the minimum of two κ-µ-g 

random variables versus parameter β2. 
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Mean value of the minimum of two κ-µ-g 

random variables depending on the parameter β1 for 

c1=c2=μ1=μ2=2 and variable parameters κ1, κ2, β1 

and β2 is drawn in Fig. 5. In the Fig. 6, the minimum 

of two κ-µ-g random variables versus parameter β2 

is presented for c1=c2 =μ1=μ2=2, and variable β1 and 

Rician factors κ1 and κ2. 

The dependence of minimum from parameters β1 

and β2 is bigger for smaller values of these 

parameters. The curves achieve maximums and stay 

with these values for all rest values of parameters β1 

and β2. 

The mean values of the ratios of two κ-µ-g 

random variables versus different fading parameters 

are presented in Figs. 7 to 10 [2]. In Figs. 7 and 8, 

the mean values of the ratio of two κ-µ-g random 

variables versus Rician factors κ1, i.e. κ2, for 

c1=c2=μ1=μ2=2 and β1=β2=1, and variable other 

parameter κ, are plotted. 

One can see from these few figures that change 

of parameter κ2 has small influence to the mean 

values of the ratio of two κ-µ-g random variables. 

The increasing of κ2 leads to decreasing of the mean 

values of the ratio of two κ-µ-g random variables. 

On the other side, an increase of parameter κ1 brings 

to increase of the mean values of this ratio. 

In Figs. 9 and 10, the mean values of the ratio of 

two κ-µ-g random variables versus parameters β are 

given. It is visible from these figures that mean 

value of the ratio of two κ-µ-g random variables 

growing when parameter β1 increases, and becomes 

smaller when parameter β2 is higher. 

 

 
Fig. 7. Mean value of ratio of two κ-µ-g random 

variables depending on the Rician factor κ1. 

 
Fig. 8. First moment of the ratio of two κ-µ-g 

random variables versus Rician factor κ2. 

 

 
Fig. 9. Mean value of ratio of two κ-µ-g random 

variables depending on the parameter β1. 

 

 
Fig. 10. Mean value of ratio of two κ-µ-g random 

variables versus parameter β2. 
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Fig. 11. Mean value of product of two κ-µ-g random 

variables versus Rician factor κ1. 

 

The mean values of the product of two κ-µ-g 

random variables versus fading parameters are 

plotted in Figs. 11. to 14 [2]. The mean values of 

product of two κ-µ-g random variables versus 

Rician factors κ1 for c1= c2 =μ1= μ2=2, κ2=0.2 and 

variable parameters β1 and β2 is presented in Fig. 11. 

The mean values of product of two κ-µ-g random 

variables depending of Rician factors κ2 is given in 

Fig. 12. The mean values of the product of two κ-µ-

g random variables versus parameters β1 and β2 are 

shown in Figs. 13. and 14. First, in Fig. 13, the 

graphs are shown for: β2=0.2 and variable Rician 

factors κ1 and κ2, while the parameters of curves in 

Fig. 14 are: β1=1, Rician factors κ1 and κ2 are 

changable, and c1=c2=μ1=μ2=2 is valide in both 

figures. 

It can be seen from these figures that increasing 

of parameters κ1and κ2 leads to the increase of the 

mean values of the product of two κ-µ-g random 

variables. 

 

 

Fig. 12. Mean value of product of two κ-µ-g random 

variables depending on the Rician factor κ2. 

 

Fig. 13. Mean value of product of two κ-µ-g random 

variables depending on parameter β1. 

 

 

Fig. 14. Mean value of the product of two κ-µ-g 

random variables depending on the parameter β2. 

 

Especially, from Figs. 13 and 14, one can notice 

that bigger parameters β1 and β2 has bigger 

influence to enlarging of the mean value of product 

of two κ-µ-g random variables. With the increase of 

the mean value of useful signal, the system 

performances are improving. This can be 

accomplished with an increasing of the power of the 

dominant component and reducing the power of 

scattering components. With growing of the power 

of scattering components, the outage probability is 

getting bigger, what worsens the system 

performance. 

It is obvious from Figs. 7. to 10. that an increase 

of parameters κ1 and β1 leads to an increase of the 

mean value of the signals ratio, reducing the error 

probability and improvement of system 

performance. When parameters κ2 and β2 are 

increasing, the signal mean value decreases and the 

error probability increases. From Figs. 11 to 14 is 

visible that system performance is better for bigger 
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values of parameters κ1 and κ2 and smaller values of 

parameters β1 and β2. 

The designers of wireless telecommunications 

systems can use this analysis to select the optimal 

system parameters, for which the mean value of the 

signal is growing. Then, the system error probability 

decreases and performance of wireless 

communication system is better. 

 

 

4 Conclusion  
The κ-µ-g random variable is discussed in this 

paper. The κ-µ-g random variable arises from the κ-

µ random variable with Gamma distributed power 

of κ-µ random process.  

The closed form expression for probability 

density function and cumulative distribution 

function of κ-µ-g random variable are determined. 

The obtained expressions can be used in 

performance analysis of wireless communication 

systems operating over κ-µ multipath fading 

channels undergo Gamma shadowing.  

In this paper, the maximum of two κ-µ-g random 

variables is processed. PDF and CDF of the 

maximum of two κ-µ-g random variables are 

derived. Statistics of the maximum of two κ-µ-g 

random variables can be used in performance 

analysis of wireless communication systems with 

SC combiner with two branches in the presence of 

Gamma shadowed κ-µ multipath fading.  

The statistics of minimum of two random 

variables is also analyzed. It is necessary for 

performance evaluation of wireless relay 

communication systems with two sections. Under 

determined conditions, signal envelope at output of 

relay system can be expressed as product of signal 

envelope at each section. Cumulative distribution of 

minimum of two random variables is used for 

calculation the outage probability of relay system 

with two sections. 

The distribution of the ratio of random variables 

is also investigated because it is important in 

statistical analysis in wireless communication 

systems in the presence of fading. In this case, the 

random variable in nominator presents the desired 

signal envelope while the random variable in 

denominator presents the interference signal 

envelope. This is important in environment where 

interference is present during transmition. 

In composite shadowed fading environment, the 

signal envelope is modeled by product of two 

random variables. In the situations when two fading 

affect together at the combiner inputs, the equivalent 

envelope is equal to the product of two random 

variables. Because of that, investigation of PDF of 

product is very important. 

At the last section, the influence of Rician factors 

and Gamma long term fading severity parameters on 

the performance of two κ-µ-g random variables is 

analyzed. This analysis is motivated by the fact that 

this distribution evinces an excellent agreement to 

experimental fading channel conditions. An 

application of these results for the wireless 

communications community is very important. 

In order to provide enough information for the 

overall system design and configuration, deriving 

expressions for moments-generating function will 

be the subject of our future work. 

 

 

Appendix 
We consider and solve the integral [2]:  
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For considered case, the parameters are: 
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